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Abstract—Intrusion detection systems (IDSs) produce a large
number of alerts, which overwhelm their operators, e.g., a deploy-
ment of the popular Snort IDS in the campus network of ETH
Zurich (which includes more than 40 thousand hosts) produces
on average 3 million alerts per day. In this paper, we introduce
an IDS alert correlator, which we call Extrusion Detection Guard
(EDGe), to detect infected hosts within a monitored network from
IDS alerts. EDGe detects several malware that exhibit a multi-
stage behavior and it can identify the family and even variant
of certain malware, which helps to remediate and prioritize
incidents. Our validation based on manual real-time analysis of a
sample of detected incidents shows that only 15% of the detected
infections are false positives. In addition, we compare EDGe with
a state-of-the-art previous work and show that EDGe finds 60%
more infections and has a lower number of false positives. A
large part of this paper focuses on characterizing 4,358 infections
(13.4 new infections per day) detected with EDGe from a unique
dataset of 832 million IDS alerts collected from an operational
network over a period of 9 months. Our characterization shows
that infections exhibit spatial correlations and attract many
further inbound attacks. Moreover, we investigate attack heavy
hitters and show that client infections are significantly more
bursty compared to server infections. Finally, we compare the
alerts produced by different malware families and highlight key
differences in their volume, aliveness, fanout, and severity.

Index Terms—Intrusion Detection, Alert Correlation, Malware,
Snort, Malware Measurements

I. INTRODUCTION

As the Internet has become more pervasive during the
last decade, malware has also evolved reaching a high level
of sophistication. Tailoring effective countermeasures against
malware threats has proven to be very hard for a num-
ber of reasons. First, the increasing complexity of software
components makes it inherently difficult to eradicate all ex-
ploitable vulnerabilities. Second, modern malware increasingly
target the end-user by leveraging various social engineering
techniques that bypass intrusion prevention measures. Third,
network compromise is a highly asymmetric threat requir-
ing the exploitation of a single vulnerability, while multiple
machines need to be properly patched and hardened to have
any kind of security assurances. For these reasons, intrusion
prevention on an operational network will always eventually
fail. Consequently, security practitioners need effective tools
to perform extrusion detection, i.e., methods to detect and
monitor hosts within their network that are already infected
by malware.

Existing extrusion detection approaches suffer from gen-
erating a very large number of false positives. For example,
Snort in the academic network of ETH Zurich produces 3
million alerts per day on average. In this work, we introduce

a novel extrusion detection system for the popular Snort IDS,
which we call Extrusion Detection Guard (EDGe). EDGe
uses an information theoretic measure, called J-Measure, to
identify statistically significant temporal associations between
a selected pool of alerts. In this manner, it detects malware that
exhibit a recurring multi-stage behavior. In addition, EDGe can
classify the family and variant of detected malware, which
helps to prioritize and remediate infections. We evaluate a
deployment of EDGe in an operational network and show
that EDGe produces only 15% false positives. In addition,
compared to a state-of-the-art IDS alert correlator, EDGe
detects 60% more infections with fewer false positives.

Our second main contribution is the characterization of
4,358 infected hosts detected with EDGe over a period of 9
months in a large academic site with more than 40 thousand
unique hosts. First, we characterize the volume, types and
impact of infections we observe. We find for example that
out of a total of 40 thousand distinct hosts, approximately 8%
were infected at least once during their lifetime. Second, we
characterize how infections correlate across time and space.
We find that healthy hosts closer in terms of IP address
distance to infected hosts are much more likely to become
infected. In addition, our time series analysis shows that
server infections are almost independent in time, while client
infections are consistently more bursty. Finally, we compare
key characteristics of different malware families. We find
that trojans have the longest lifetime, followed by spyware,
backdoors, and finally worms. In addition, we observe that
infections have a strong impact on the number of outbound
alerts generated by infected hosts, which is more prevalent for
backdoors and worms.

In summary, in this work we make the following contribu-
tions:

1) EDGe: We introduce an IDS alert correlator for a
deployment of the popular Snort platform in an opera-
tional network. In our validation, EDGe finds 60% more
incidents and fewer false infections (only 15%) than the
most related previous approach. Besides, EDGe can also
identify the family and variant of a detected malware.

2) Malware measurements: We characterize 4,358 in-
fected hosts detected with EDGe in an academic network
and outline several novel insights about infections.

The remainder of this paper is structured as follows. In
Section II we describe the IDS alert traces we used in our ex-
periments. We introduce EDGe in Section III and describe our
validation and comparison to a previous work in Section IV.
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Then, we characterize detected infections in Section V. Finally,
we review related work in Section VI, discuss our findings in
Section VII and conclude our paper in Section VIII.

II. IDS DATA

Our dataset is comprised of raw IDS alerts triggered in the
main campus of ETH Zurich by a Snort [1] sensor, which is
placed between the edge router of the campus and the network
firewall. The sensor monitors all the upstream and downstream
traffic of the campus. It uses the official Snort signature ruleset
and the Emerging Threats (ET) ruleset [2], which are the two
most commonly-used Snort rulesets. As of April 2011 the two
rulesets have a total of 37,388 distinct signatures to detect
malicious activities.

The collected alerts have the standard full Snort format.
The fields we use are the unique rule identification number,
the rule description, the timestamp that denotes when the
alert was triggered, the IPs and ports of the communicating
hosts, the default rule classification, which indicates the type
of suspected malicious activity, and the rule priority, which
provides a severity rank. The complete raw alerts as generated
by Snort are sent every hour to our collection and archiving
infrastructure.

The dataset is both large and rich. During the 9 month
period we study, spanning from January 1st 2010 to September
22nd 2010, our monitoring ran on a 24/7 basis with only minor
interruptions (corresponding to approximately 99% availabil-
ity), capturing more than 832 million alerts from 91,512
thousand internal IPs. On an hourly basis we record on average
more than 130 thousand alerts. The vast majority of these alerts
have low priority and usually correspond to policy violations
that are not directly related to security incidents. However, a
significant number, approximately 50 million, consists of high
priority alerts.

To identify unique host infections, we restrict our analysis to
hosts with static IP addresses and exclude alerts from dynamic
IP address ranges. We distinguish between dynamic and static
subnets using a catalog maintained by our network adminis-
trators that documents each campus subnet. Additionally, this
information enables us to find whether a subnet accommodates
server or client machines. The excluded alerts originating from
dynamic IP address ranges, correspond to 56% of the total
active internal IPs in our data. Focusing on the 40,082 hosts
that use static IP addresses is important as it enables us to
track and characterize their behavior over time.

III. METHODOLOGY

A. Alert Bundling

The first challenge that we deal with is that security events
often trigger spurts of very similar alerts. For example, certain
types of port scanning targeting a range of destination ports
will generate a large number of almost identical alerts that only
differ in the destination port and timestamp fields. Besides,
malware often change slightly their behavior in order to evade
detection. Snort rulesets often include different signatures for
each different malware version. When the malicious behavior

is manifested, multiple versions of the same signature may
be triggered in a very short time window. For example, we
observe spurts of the alert “ET DROP Known Bot C&C Server
Traffic group (X)” that only differ in the version number
X. Such spurts of almost identical alerts are not desirable,
since they defuse a single event into multiple segments.
Alert bundling groups spurts of very similar alerts into a
single aggregate alert. Compared to different forms of alerts
aggregation, which have been studied in the literature [3],
alert bundling aims at aggregating spurts of almost identical
alerts instead of creating groups of much more diverse alerts
that correspond to the same aggregate multi-stage incident.
Alert bundling is useful as it reduces the amount of alerts that
need to be processed and facilitates the statistical analysis of
different events.

We perform alert bundling over three fields, source/destina-
tion ports and alert ID. We generalize the port fields from a
numerical value to {privileged,ephemeral}, based on whether
the port number is below or above 1024, respectively. We
also group signature IDs that correspond to different flavors of
the same malware into a single signature ID by ignoring the
version number. We then merge alerts triggered within a short
time window into a single aggregate alert. We preserve the
timestamp of the first alert of the merged sequence. We select
an aggregation window of 5 seconds. Our calibration showed
that this is sufficient to substantially reduce the number of
alerts, while further increasing this window had a negligible
effect on the volume of alerts. Alert bundling reduced the total
number of alerts in our data by 19%.

B. Alert Classification

Our dataset includes alerts triggered from several thousands
unique rules. Snort rules are mainly community-contributed
and follow a loose two-level classification scheme. Each rule
is part of a ruleset, which groups related rules. For example,
the ruleset imap.rules groups rules associated with the
IMAP protocol. The second level of classification is based
on the class field that is contained within each rule. The class
field associates each rule with a unique class that provides
information regarding the intended goal of an intrusion.

For our purposes, we find the default two-level classification
scheme insufficient to extract alerts that relate to attacks and
compromised hosts, which are the types of alerts we are
interested in. The first shortcoming is that rules are grouped
into rulesets based on different criteria. For example, some
rulesets, like imap.rules and voip.rules, group rules
based on the protocol or the application that is targeted, while
some other rulesets, like ddos.rules, groups rules based
on the type of the intrusion. A second problem is that rulesets
often contain very diverse rules. For example sql.rules
contains rules that range from accessing a database, which
could correspond to benign behavior, to SQL worm prop-
agation, which could indicate an infected host. Moreover,
the classes associated with the classtype field are scarcely
documented and in some cases ambiguous. In Table I we
list the classes for alerts in the sql.rules file and provide
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Fig. 1: Snort Alert Full Format

TABLE I: Classtype frequency of rules in sql.rules

# Classification Description
691 misc-activity Miscellaneous activity
293 successful-recon-limited Information leak
52 attempted-admin Attempted administrator privilege gain
22 attempted-user Attempted user privilege gain
4 unsuccessful-user Unsuccessful user privilege gain
3 shellcode-detect Executable code was detected
2 suspicious-login An attempted login using a suspicious username was detected
2 misc-attack Miscellaneous attack

the official documentation for each class. Some classes are
quite intuitive, for example Attempted administrator privilege
gain denotes that a privilege escalation attack took place.
However, some other classes, like Miscellaneous activity, are
quite cryptic and can result in loose classifications.

TABLE II: Rulesets and classtypes assigned to the Compro-
mised class

Rulesets Description
attack-responses.rules Privilege escalation attempts

backdoor.rules Trojan activity operating as Backdoor
ddos.rules Bot initiating a DDoS attack
virus.rules Malicious code attempting to propagate

emerging-botcc.rules Bot-related trojan activity
emerging-compromised.rules Attacks from blacklisted IPs
emerging-user agents.rules Data stealing malware

emerging-virus.rules Malicious code attempting to propagate
Classtypes Description

trojan-activity A network Trojan was detected

To address this problem, we use a hierarchical approach
to classify the rules included in our data into three classes,
namely Attacks, Compromised hosts, and Policy violations
(similarly to [4]). In the first step, we manually examined all
the rulesets and identified the ones that clearly characterize
an attack or a compromised host. With this step we were
able to classify 72.5% of the total number of rules. For
the remaining set of rules, we used the classtype field and
identified 16 classes that can be clearly associated with attacks
or compromised host activity. Finally, for the remaining 681
rules, we manually classified them by examining the details
of the signature, the assigned default priority level, the exact
byte sequence, and when possible we validated our results with
information provided in security archives and bulletins [1], [5].
In Table II we summarize the rulesets and classtypes we used
for our Compromised class.

Finally, the alerts that are not classified as attacks or
compromised hosts, mostly occur when a user does not comply
with a specific policy. Typically these alerts correspond to P2P,
VoIP, and chat related rules. We discard these rules since they
do not provide any useful information about infections and
work only with alerts of the Attack and Compromised classes.

C. Malware Detection with EDGe
A naive approach for identifying infected hosts within a

monitored network is to rely solely on Attack and Compro-
mised alerts. However, the excessive amount of false positives,
makes it very hard to have any level of confidence on a single
alert. EDGe correlates multiple IDS alerts to find multi-stage
infection patterns. In particular, it has the following design
goals:

• Detect recurring multi-stage behavior: Presently, mal-
ware developers bundle a plethora of features and capabil-
ities to make their product more attractive. For example,
malware attempt to redirect users to malicious websites
and download additional trojans; they update, receive
instructions, share confidential data, and participate in
(D)DoS attacks or spamming campaigns; they attempt
to propagate by scanning for exposed nodes and by ex-
ploiting vulnerabilities, etc. This means that most modern
malware exhibit a multi-stage network footprint. Addi-
tionally, the multi-stage behavior is typically recurring.
For example, a host infected with an SQL worm, will scan
for vulnerable machines running an unpatched version of
the Microsoft SQL server. Every time a target is found,
the infected host will initiate a buffer overflow attack in
order to exploit the vulnerability and eventually infect the
victim. A Zeus trojan will attempt to inject fake HTML
code every time the user visits an online bank page, in
order to steal confidential data. The collected details will
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be then delivered to databases residing in a remote site.
Based on these observations, EDGe attempts to reduce the
number of IDS false positives by searching for malware
that exhibit a recurring multistage behavior.

• Focus on extrusion detection: EDGe aims at detecting
infected hosts within an organization. It does not try to
proactively prevent an infection or to detect other types
of intrusions.

• Reduce false positives: The number of false positives is
involved in a fundamental trade-off with the sensitivity
of the detector. Presently, IDSs suffer from a very large
number of false positives. In this trade-off, we opt to
make EDGe conservative, i.e., less sensitive, so that the
inferences it produces include a small number of false
positives. This also means that we may incur some false
negatives, which we prefer than triggering a large number
of false positives. In order to reduce the number of
false positives, we engineer EDGe to combine multiple
evidence.

• Keep it simple: We opt to keep EDGe simple as parsi-
mony provides a number of advantages: 1) inferences are
interpretable and easier to trace and validate both for a
scientist and an IDS operator; and 2) EDGe can efficiently
analyze large archives of millions of IDS alerts.

EDGe Detection Heuristic: Our approach aims at detecting
a recurring multi-stage footprint generated by infected hosts. A
multi-stage footprint resolves into tuples of strongly correlated
alerts. Such tuples capture different actions undertaken by an
infected host that occur frequently and consistently over time,
increasing our certainty that an actual infection has indeed
occurred. We use an entropy-based information-theoretic cri-
terion to detect correlated tuples of alerts.

Our input data is a time series of alerts, where each alert
is identified by the following five fields: <ID; SrcIP; DstIP;
SrcPort; DstPort>. We examine each internal host separately,
discretize its sequence of alerts into time windows of length T ,
and mine for tuples of the type: if alert X occurs, then alert Y
occurs within the time window T . We denote the above tuple
with X ⇒ Y . Each tuple is associated with a frequency and
a confidence, where the frequency is the normalized number
of occurrences of the first alert X and the confidence is the
fraction of occurrences that alert X is followed by alert Y
within T . A well-known measure of tuple significance that
combines these two basic metrics and enables to rank tuples
is the J-Measure [6] (for an overview of tuple ranking methods
refer to [7]):

J-Measure(Y ;X) = P (X)
(
P (Y |X) log

P (Y |X)

P (Y )
+

P (Ȳ |X) log
P (Ȳ |X)

P (Ȳ )

)
,

(1)

where P (X) is the probability that alert X occurs; P (Y ) is
the probability of at least one Y occurring at a randomly
chosen window; P (Y |X) is the probability that alert X is
followed by at least one alert Y within T ; and Ȳ denotes the

event that Y does not occur. Intuitively, the first term P (X)
captures the frequency of X , while the second term is the
well-known cross-entropy and captures the average mutual
information between the random variables X and Y . In this
way, the J-Measure ranks tuples in a way that balances the
trade-off between frequency and confidence.

The cross-entropy between X and Y drops when the two
events tend to occur together. In particular, there are two cases
when the corresponding entropy of Y drops. When X happens,
Y always happens, or it doesn’t ever happen. Clearly, the first
case is of interest to us, since it reflects the probability of
the two alerts co-occurring in a specific time window T . The
second case is irrelevant since there will always be numerous
alerts that do not occur when a specific alert happens, resulting
in an inflated J-Measure value. Therefore, we only keep the
left term of the cross-entropy to evaluate the significance of a
tuple.

One desirable characteristic of the J-Measure is its limiting
properties. Its value ranges from 0, when random variables
X and Y are independent, to 1

P (Y ) , when they are completely
dependent, which facilitates the process of defining a threshold
above which tuples are considered strongly correlated. An
internal host that produces at least one strongly correlated
tuple is detected infected. We fine-tune the threshold to 0.85

P (Y )
using validated infections from our most reliable source, which
is security tickets about infected and remediated systems by
our security group. We also evaluate the sensitivity of EDGe
to alternative thresholds and find that 0.85

P (Y ) realizes a good
balance. Due to space limitations, we refer readers interested
in our sensitivy analysis to our previous work [8]. From the
set of correlated tuples we can easily extract the infection
timestamps. For each tuple X ⇒ Y , if there is no other
tuple Z ⇒ W involving the same internal host within a time
window Treinfect, then this is a new infection at the timestamp
of alert X . Otherwise, this is an ongoing infection and we
ignore the corresponding tuple.

In Algorithm 1 we show the pseudo-code of EDGe. Its
complexity is O(n2), where n is the number of unique alerts
triggered by an internal node during T . In our experiments n
is quite low and on average equal to 3.1. To run EDGe on
one day of data takes on average 19.3 minutes on a system
running Debian Etch with a 2GHz Quad-Core AMD Opteron.

Parameter Tuning: For the window size T we conserva-
tively select one hour, since most alerts related to the same
infection in our data occur within minutes. Selecting a larger
window has negligible impact on the results. Moreover, we
consider that a host is re-infected if the host is active in
our dataset, but for a period of Treinfect it is not detected
as infected by EDGe. We set the Treinfect threshold to two
weeks. We select this value in a conservative way based on
two observations. Incidents identified and investigated in the
past in our infrastructure suggest that the worst case delay
required by our security group to fix a reported problem is
approximately one week. This time frame covers the stages
of threat identification, threat assessment, and remediation of
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Algorithm 1 Pseudo-code of EDGe for detecting infections
Require: Set L of alerts triggered by internal hosts
Ensure: Correlated tuples Si for internal node i

for all internal nodes i do
for all hourly timebins Tk do

for all tuples (Ai, Bi) in L, triggered in Tk, where Ai 6= Bi

do
if Ai ⇒ Bi in candidate tuple set Ri then

Ri.UpdateTupleStats(Ai ⇒ Bi);
else

Ri.AddTuple(Ai ⇒ Bi);
end if

end for
end for
for all tuples Mi ⇒ Ni in Ri do

if J-Measure(Mi ⇒ Ni) > Jthresh then
Si.AddTuple( Mi ⇒ Ni );

end if
end for

end for

the host either by completely removing the malware or by
rebuilding the entire system. On the other hand it is known,
that some malware infections stay dormant for predefined
time periods or wait for an external command to trigger their
behavior [9]. In this case, the host will be reported as benign by
EDGe, since no network trace of malicious activity is being
generated. However, after the initial stimulus and assuming
that the malicious behavior has been manifested, it is highly
unlikely that the malware will fall again into idle mode for
a time period longer than Treinfect [10]. Out of the total
4,358 infections we find in our characterization, 7.4% are re-
infections.

D. Malware Classification

We classify EDGe-detected malware into a two-level tax-
onomy, which is based on our manual validation. The clas-
sification is useful for prioritizing and identifying malware,
which facilitates forensics investigation and remediation. In
addition, we use it to compare different classes of malware in
Section V. We first classify EDGe malware based on their goal
and propagation method into four families, namely trojans,
spyware, backdoors/bots, and worms:

Spyware are otherwise useful pieces of software that are
bundled with hidden fraudulent activity. Typically, they at-
tempt to harvest user confidential data such as passwords,
registration details, e-mail contacts, visited domains, cookies,
or keystrokes. In some cases the unsolicited activity is stated in
the license agreement, and user’s consent is required for the
installation. Legally spyware fall in a grey zone since users
have explicitly accepted the licence terms. However, in reality
they exploit user negligence and lack of technical awareness
and expertise.

Backdoors/Bots allow an external entity to remotely control
an infected machine. Backdoors use an active vulnerability in
order to exploit the victim and hook themselves to the OS.
A persistent connection to the victim’s machine provides full
or partial access and control, allowing the attacker to execute

Trojans
Malware Variant Classified Snort Signature IDs
FakeAV 2012627, 2010627, 2011912, 2012725
Monkif 2010071, 2008411, 2012612
Simbar 2009005
Torpig 2011365, 2010267, 2011894, 16693
Nervos 2802912, 2801671
Koutodoor 2804717
MacShield 2012959, 2012958, 2802929, 2802870
Kryptic 2801962, 2013121
Comotor 2011848

Backdoors
Malware Variant Classified Snort Signature IDs
Zeus 2010861, 2011827, 2008661, 2011827
Blackenergy 2007668, 2010886
Parabola 2007626, 2002384
Ransky 2002728
Avzhan 2002728
SpyEye 2012491, 2011857, 2010789
Bamital 2802173, 2012299
LibNut 2803032

Spyware
Malware Variant Classified Snort Signature IDs
AskSearch 2003494, 2012000, 2003492, 2008052
Gator 2003575
SslCrypt 2012862
HotBar 2802896, 2800945, 2801396
Gh0st 2010859
Spylog 2007649, 2008429
Yodao 2011123
QVod 2009785, 2014459
Zango 2003058, 8073
Playtech 2008365
Gamethief 2012736

Worms
Malware Variant Classified Snort Signature IDs
Storm 2007701
Koobface 2010150, 2014303, 19058, 2009156
Rimecud 2012739
Conficker 2008802, 2009024, 2009205, 2008739
Lizamoon 2010268
Palevo 2010268, 2001689, 2010493

TABLE III: Malware families, malware variants and associated
signatures

arbitrary commands. The compromised machine is typically
herded to a botnet that can be used by cybercriminals to per-
form targeted DoS attacks, instrument large-scale spamming
campaigns, or simply be leased to third-parties.

Worms are self-replicating and propagating programs that
attach themselves to processes or files making them carriers
of a malicious behavior. They employ active scanning to build
a set of candidate targets and subsequently attempt to exploit
a predefined vulnerability. Worms by default do not provide
a control channel for the infected machines. However, their
propagation functionality can be added to trojans to built
composite malware that are remotely administered and can
automatically infect new hosts.

Trojans masquerade as benign programs providing a seem-
ingly useful functionality to the user, but clandestinely perform
illegal actions. In contrast to backdoors, the user typically
consents to the installation of the malicious software mod-
ule. Trojans propagate using drive-by-downloads, javascript
exploits, and simple social engineering techniques such as
attaching malicious code to spam emails. Subsequently they
can be used to perform a wide range of illicit actions such
as leakage of confidential information, url-redirection to mali-
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cious domains typically to raise the hit count of these domains
for advertising purposes, and downloading additional malware
on the compromised systems. The latter method, called pay-
per-install, is a paid service allowing bot herders to install their
backdoors on large populations of nodes for a fixed price.

We use these classes because they reflect the four primary
behaviors EDGe detected in our infrastructure. We note that
in another context, a different taxonomy might be useful.
For example, if one cares about spyware, a classification
into adware, badware, scareware, and crimeware might be
appropriate.

Furthermore, we manually analyzed 409 distinct signatures
found in 54,789 tuples produced by EDGe during the 9 month
tracing period. From this set we identified 75 signatures that
are suitable for detecting specific malware variants. We only
use signatures that incorporate payload based criteria that,
based on our analysis, can be associated with the respective
malware variants. We ignore signatures that attempt to identify
blacklisted contacted domains or that detect generic behaviors
such as malicious egg downloads, redirections, or scanning
that could potentially be triggered by a broad set of malware.

For example Simbar, which is one of the most prominent
trojan infections in our infrastructure, attempts to leak sensitive
information about the HTTP objects that are susceptible to
ActiveX Exploitation attacks by overloading the User-Agent
string of the HTTP header. This is done by setting the value
of the User-Agent field equal to the string SIMBAR=value,
where value is the descriptor of the target ActiveX objects.
The corresponding signature, which we match to the Simbar
malware uses the following content rules to detect an infection:

content:"User-Agent|3a|"; content:"SIMBAR=";
pcre:"/User-Agent\:[ˆ\n]+\;\sSIMBAR=/H";

When the signature of an alert in a tuple reveals the malware
variant that triggered it, then we associate the corresponding
host with the respective variant. In the example shown above,
the detected payload sequence shows that this signature was
triggered by a Simbar related activity, therefore, we associate
it with Simbar infections. For each family, in Table III we list
the corresponding malware variants and the associated set of
alerts.

Finally, we exploit the descriptor provided by the signatures.
For example, the signature with descriptor “ET DROP Known
Bot C&C Server Traffic UDP” is associated with the Bot
family, whereas “ET TROJAN Generic Trojan Checkin” is
related to Trojan related infections. In this way, we tagged
94 additional signatures with a malware family label. For
these cases, we can determine the malware family although
we cannot identify the corresponding variant. This approach
can lead to misclassifications in cases where this behavior
is manifested by a different type of malware. For, example
the alert “ET TROJAN Generic Trojan Checkin”, which we
associate to the trojan family, could be triggered by back-
doors checking whether their controller is alive. However, the
classification using alert descriptors affects only 16% of the
classified incidents in our analysis in Section V.

For validation, we compare to malware classifications of
two well-known publicly available databases [11], [12] and
explain differences. In Table IV we list mismatches and the
fraction of incidents they affect. Note, that our classification is
based on the associated IDS alerts, whereas the classification
of [11], [12] is based on the known behavior of malware.
The number of infection incidents stemming from ambiguous
malware classifications are 164, corresponding to only 4.8%
of the total classified incidents presented in our analysis in
Section V.

IV. VALIDATION AND COMPARISON TO PREVIOUS WORK

Remotely validating numerous detected infections in an
operational network is very challenging. A first challenge is
that typically no single tool or information source provides
sufficient evidence to validate an incident. A second challenge
is that the types of malicious behaviors we examine are
diverse, ranging from multi-stage attack and worm propagation
events to complex trojan and malware communication patterns.
Our validation follows a two step process. Given a detected
infection, we first extract related information from independent
security sources: 1) we manually examine the signatures of
the IDS alerts; 2) we use six independent blacklists; 3) we
compute a reputation value based on the visited domains; and
4) we actively scan hosts using a combination of IP sweeps,
NIC whois querying, TCP/UDP port scanning, nmap-based
network reconnaissance and vulnerability scanning (using both
OpenVas and Nessus).

We refer to the collected information as evidence. A collec-
tion of evidence about suspected infections is then passed in
real-time (i.e., within a day of the first time an infection was
detected) to a security expert. The expert manually correlates
the expected behavior of the malware with the collected
evidence. In addition, he exploits contextual information about
the victim host (i.e., its server or client role, the installed
OS and services, and the location of its subnet) to expedite
the investigation. If all the evidence agree with the expected
behavior, then a positive assessment is made, otherwise it
is concluded that the infection could not be validated. We
conservatively consider the latter a false positive. The evidence
extraction along with case studies about the manual validation
process are presented in detail in [8]. We further characterize
the manual validation process in [13] and show how to
automate it in [14].

The validation process is very demanding and time con-
suming for the analyst, therefore, we limit ourselves to a
subset of the reported infections. Specifically, we validated
200 consecutive incidents that were reported by EDGe based
on the analysis of 37 million raw alerts. The analyzed nodes
are diverse spanning from servers to desktop PCs and wireless
devices. The overall false positive rate is only 15%. Recall
that in our input data, we observe on average 3 million alerts
per day, which we believe include a large number of false
positives. By reversing our bundling procedure we find that
only 0.6% of our input alerts of the class Attack and Com-
promised are associated with an infection. EDGe helps focus
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Variant EDGe Threatexpert [11] Trendmicro [12] % of Infections
(# of Incidents) Classification Classification Classification Affected
Torpig (28) Trojan Trojan Backdoor 0.82
MacShield (12) Trojan Spyware Spyware 0.35
Zeus (8) Backdoor Backdoor Trojan 0.23
SpyEye (9) Backdoor Trojan Backdoor 0.26
Bamital (3) Backdoor Trojan Trojan 0.08
QVod (93) Spyware Trojan Trojan 2.73
Gh0st (4) Spyware Trojan Spyware 0.11
Koobface (2) Worm Trojan Worm 0.05
Rimecud (3) Worm Trojan Trojan 0.08
Storm (2) Worm Trojan Worm 0.05

TABLE IV: Ambiguous malware variant classifications and percentage of associated incidents

the attention of administrators to a small number of actionable
cases that include substantially fewer false positives. The false
positive rate for trojans, spyware, worms, and backdoors is
12.3%, 10.6%, 11%, and 35%, respectively.

Moreover, to understand better the strengths and limitations
of our heuristic, we investigate the root causes of the observed
false positives. The following cases were the source of most
false positives.

DNS Requests. First, we find that DNS requests trigger
signatures from the Compromise class when an IP address
is blacklisted. We observe alerts with SIDs in the range
[2500000:2500941], which correspond to backdoor activity.
These cases increase the false positive rate of backdoors.

Skype Supernodes. Skype supernodes within our network
generate alerts with IDs in the ranges [2406000:2406966]
and [2500433:2500447]. Skype supernodes connect Skype
clients by creating the Skype P2P overlay network. However,
if a remote Skype user connecting to a local supernode is
blacklisted, then Snort will trigger an alert. This is repeated
whenever a Skype client attempts to initiate a communication.

Antivirus. Third, a specific antivirus program generates IDS
alerts of the class Compromise when updating. The triggered
signatures check for known patterns of malicious activity
found on the payload of the transmitted packets. The updates
of this antivirus contain the actual pattern that it attempts to
detect in plain format.

Online Games. Finally, we observe that certain on-
line games generate Snort alerts with IDs in the ranges
[2003355:2003626] and [2510000:2510447]. In particular, the
triggered signatures of browser-based games suggest an on-
going spyware activity. The reason is that the websites exhibit
a behavior similar to clickbots, attempting to redirect the
player to 3rd party, potentially malicious, websites for profit.
In the case of stand-alone gaming applications, we observe that
the client will tend to preserve multiple concurrent connections
with several other players. Often a small set of these remote
IPs are blacklisted.

It is possible to further increase EDGe’s detection accuracy
by incorporating contextual information regarding the underly-
ing infrastructure. For, example a network administrator should

be able to easily identify that incidents related to the DNS
servers do not constitute actual infections, and filter them out.
In our evaluation, we did not use such whitelisting information
and therefore its performance can become even better in an
operational environment.

A. Comparison with BotHunter

Bothunter [15] is the most related previous work to EDGe.
It correlates IDS alerts to a predefined malware dialog model.
Malware infections are modeled as loosely ordered IDS-alert
sequences, triggered during communication of an internal host
with several external entities. All malware share a set of
underlying actions that occur during their lifetime consisting of
reconnaissance, exploitation attempt, binary egg download and
execution, command and control establishment, and propaga-
tion. This approach is similar to our work, due to the concept
of an underlying malware lifecycle that triggers different types
of alerts, while the infected host undergoes different infection
stages. However, there are some critical differences regarding
the methods used to capture the malware lifecycle.

Bothunter considers a more strict sequence of events that
need to occur in order to raise an alert. EDGe on the other
hand searches for strongly correlated tuples of any two events,
rather than a strict sequence of multiple events. This way it
is more robust in the absence of evidence for the intermediate
stages of the malware’s lifetime. Moreover, our sequencing
is much more flexible, constructing tuples of alerts that co-
occur within a fixed time-window, without specifying the
respective order. In this way we allow scenarios, where the
inbound exploitation occurs after the communication with the
C&C. Although such scenarios may seem unconventional, they
do occur in practice, for example in the case of backdoors
allowing further exploitation of the victim host by additional
badware, such as in the case of W32/Ransky. Finally, the
criterion used to mine for significant events in the case of
Bothunter does not take into account that frequently occurring
events may incorrectly yield correlated sequences. This makes
Bothunter more sensitive to alerts that get triggered very
often, exhibiting abnormally high frequency, which often can
be attributed to network/protocol misconfigurations or badly
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written signatures. EDGe uses the J-Measure to effectively
balance the frequency and the confidence of alert tuples.

Bothunter is publicly available. We deployed version 1.7.2
of Bothunter using the latest signature set provided in [16].
Note, that Bothunter uses a custom ruleset, consisting of a
selection of VRT and ET rules, bundled with few custom rules,
accounting for 3,152 signatures in total. The ET and VRT rules
are identical to the original ones, with an additional string
appended to the alert description indicating the Bothunter
event type. Since these rules are frequently updated, we
augmented the current ruleset with 62 additional signatures
from [16], which were used during our validation period and
were subsequently removed.

We used Bothunter in offline batch processing mode, using
as input trace the IDS data we collected during the validation
period. We had to adapt the raw alerts, by appending the
Bothunter event type to the alert descriptor, whenever the
respective Bothunter signature was available. Since, we replay
IDS alerts in Bothunter’s input stream, the Statistical Payload
Anomaly Detection Engine and the Statistical Scan Anomaly
Detection Engine, which are custom Snort plugins operating
on packet traces, were disabled. This way we can compare on
common grounds the two IDS alert correlators.

In Table V we present the results of our comparison. We
use as input data for both detectors our validation trace,
consisting of 1 month of IDS data. Bothunter detected 60%
fewer infections compared to our detector, namely 125 instead
of 200. There was a considerable overlap on the reported
incidents, since 89 infections were reported by both detectors.
Bothunter generated 36 new infections that were not reported
by EDGe, which we also validated.

Considering all incidents, our detector generates fewer false
positives (15%) compared to Bothunter (18.4%). In addition,
we take into account the respective malware family. Our
approach performs better for trojans, spyware, and worms,
with a false positive rate below 12.3% for all types, whereas
Bothunter is consistently worse exhibiting false positive rates
of 20.83%, 12.19% and 37.5%, respectively. The results are
reversed in the case of backdoors, where Bothunter has a
false positive rate of 17.8%, whereas EDGe exhibits a larger
false positive rate of 35%. This picture reflects the underlying
design assumptions of the two detectors, with Bothunter being
more effective for infections that tend to undergo multiple
stages and, therefore, generate long sequences of correlated
alerts, whereas EDGe exhibits better performance in the case
of infections that only generate evidence in few stages. In
addition, J-Measure enables to detect correlated alerts with
higher confidence.

Moreover, based on the validated inferences that were not
reported by one detector, we assess the false negatives of the
two schemes. Note, that the computed false negatives are lower
bounds, since additional infections that are not detected by
neither detector might exist. In Table V we see that the false
negatives for Bothunter is particularly high for all infection
types with the exception of backdoors. Several infections
detected by EDGe are completely ignored by Bothunter, such

as the trojans Monkif, and Nervos, the spyware Gator and the
worm Koobface. On the other hand, Bothunter performs better
in the case of backdoors, and manages to detect two additional
variants, namely rBot and PhatBot, which are missed by
EDGe.

To summarize, our method performs better in the general
case taking into account all infection types, generating fewer
false positives and finding 60% more infections. Bothunter,
on the other hand excels in the case of botnet detection but
performs poorly for the other malware families. The two
detectors could be used in parallel to improve IDS-based
malware detection.

V. CHARACTERIZING INFECTIONS

A. Volume, Types and Impact of Infections

We first find on average that on a daily basis from 10,124
active1 hosts, we detect 15.8 new infections. Taking into
account the 0.15 false positive rate of EDGe, this corresponds
to a lower bound of 13.4 new infections per day. The vast
majority of the infected hosts are client systems. Specifically,
91% of the total reported incidents affect clients, whereas we
only see on average 1.48 new infections per day on servers.
If we normalize these numbers based on the total number of
active servers and clients in our infrastructure, we estimate that
the lower bound for the probability of infection of an online
server during a day is 0.0015, whereas the corresponding value
for clients is 0.0031.

The lower probability of a server infection can be attributed
to two causes. Firstly, these systems are heavily managed,
closely monitored, and often have their OS hardened. This
means that unnecessary services are disabled, which reduces
their vulnerability “surface”. Secondly, as we saw in Sec-
tion IV most of the malware that we observe propagate using
indirect methods (e.g. drive-by-downloads, phishing) that in-
volve the user and exploit his negligence, rather than initiating
direct attacks, like scanning or buffer overflow attacks.

Moreover, out of a total of 40 thousand distinct active
IP addresses we observed during the 9-month period, ap-
proximately 8% exhibited signs of infections at least once
during their lifetime, whereas the total number of infections
(including nodes that were re-infected) was 4,358. The number
of nodes exhibiting re-infections was 239, corresponding to
less than 6% of the entire active population. The majority
of the re-infected nodes were connected to highly dynamic
subnets in our network, corresponding to student labs and
recreation areas, which are not heavily monitored. These are
mostly private laptops without administrative restrictions on
the installed applications and services. Therefore, the attack
vector of these machines is broader, which is reflected on the
increased probability of reinfection.

Detected Malware Variants: Next, we provide insights into
the malware families and the exact malware variants detected
by EDGe based on the methodology of Section III-B. Out of
the total of 4,358 infections we can classify based solely on

1An active host generates at least one IDS alert during the indicated period.
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TABLE V: Comparison between EDGe and BotHunter

Reported Validated Missed False Positive False Negative
Incidents Incidents Incidents Rate Rate

Detector EDGe BotHunter EDGe BotHunter EDGe BotHunter EDGe BotHunter EDGe BotHunter
Trojans 97 48 85 38 2 49 12.3 20.8 2.2 56.3
Spyware 66 41 59 36 10 33 10.6 12.2 14.4 47.8
Worms 9 8 8 5 3 6 11.0 37.5 27.2 54.5

Backdoors 28 28 18 23 9 4 35.0 17.8 28.0 14.81
Total 200 125 170 102 24 92 15.0 18.4 12.37 47.42

the tuples mined by EDGe 78% into the malware families of
Section III-B. In addition, for 62% of the detected malware
(2,712 incidents) we can identify the exact malware variant.
In Table VI we present the prevalence of different malware
families and variants detected by EDGe in our infrastructure.
The Trojan family is dominated by the Simbar and FakeAV
variants. In the case of Backdoors, the Avzhan, Ransky and
Parabola variants account for the vast majority of the reported
infections. Spyware on the other hand is the most popular
family with several variants, including Hotbar and AskSearch,
accounting for 311 and 722 incidents, respectively. Worms ac-
count for only 64 of the classified incidents and are dominated
by the Palevo and Conficker variants.
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Fig. 2: Heavy Hitters and Prominent Attack Targets

Heavy Hitters: For each internal host within the monitored
infrastructure, we count the hourly average number of alerts
of type Attack in the inbound and outbound directions. In
Figure 2a, we illustrate the distributions of the attack sources
and targets. We find that the two distributions are dominated by
a very small number of heavy hitters. We see that the median
number of recorded inbound attacks is equal to 60 per hour.
However, this number increases significantly for a small set
of internal nodes that are targets of up to 970 attacks per

Family Variant # Infections

Trojans

Simbar 252
FakeAV 120
Torpig 28
Kryptic 15
Nervos 13
MacShield 12
Monkif 7
Comotor 5
Koutodoor 3

Backdoors

Avzhan 80
Ransky 33
Parabola 21
SpyEye 9
Zeus 8
LibNut 5
Blackenergy 4
Bamital 3

Spyware

AskSearch 722
Zango 441
HotBar 311
Playtech 206
Spylog 139
Qvod 93
Yodao 88
SSLCrypt 19
Gator 5
Gh0st 4
Gamethief 2

Worms

Palevo 25
Conficker 23
Lizamoon 9
Rimecud 3
Koobface 2
Storm 2

TABLE VI: Prevalence of malware families and variants
detected by EDGe

hour. Almost all the servers in our infrastructure are within
this highly exposed set. This indicates that servers are much
more preferable attack targets than clients. We speculate
that this is because most malicious pieces of self-spreading
software have an initial hit-list of possibly vulnerable hosts.
These hit-lists are generated using either scanning or by
employing web-spiders and DNS-searches [17]. A highly
skewed behavior is also observed in the case of the attack
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source distribution. Approximately 5% of the internal hosts
account for more than 70% of the total outbound attacks
originating from the intranet. Blocking or better defending
against these systems can significantly reduce the number of
recorded extrusions, safeguarding at the same time exposed
internal nodes.

Impact of Infections on Inbound Attacks: Next, we
examine the impact of an infection on the number of monitored
inbound attacks. We count the average number of alerts of type
Attack targeting hosts in our intranet in an hourly basis for
healthy hosts, for infected hosts prior to their infection, and
for infected hosts after their infection. Note, that based on
EDGe the infection time is estimated after the actual infection
manifests. If a node is infected but the corresponding malware
remains dormant, it will not generate a malicious footprint on
the network. Therefore, in Figure 2b, nodes of this type are
in the pre-infection phase.

In the median case, healthy nodes and nodes in the pre-
infection phase are targets of approximately 3 attacks per hour.
These are mostly reconnaissance attacks, such as scanning,
that could be precursors of a more serious attack. The corre-
sponding number of inbound attacks in the case of infected
hosts is 7, i.e., more than double. However, if we observe the
tails of the distributions we see a much more sharp change.
At the 95th percentile of the distributions, we see on average
5 and 9 inbound attacks per hour for healthy nodes and nodes
in the pre-infection phase, respectively. For infected hosts this
number rises sharply to 50 inbound attacks per hour.

We learn that after a host is infected, the number of
inbound attacks increases sharply, in the median case by
a factor of 2 and in the tail of the distribution by a factor
of 5.5. We speculate that this is because most malware also
operate as backdoors, allowing the installation of additional
malicious code. In this way they increase the attack vector of
the infected host making it a much more attractive target. This
is especially true for servers, which dominate the tail of the
distributions shown in Figure 2b.

B. Correlations Across Space and Time

Spatial Correlations: The infections we observe exhibit
strong spatial correlations. We define IP distance as the
absolute difference between the integer representation of two
IP addresses. For each host that remains healthy throughout
the tracing period, we measure its IP distance to the closest
infected host. For each host that becomes infected, we measure
its IP distance to the nearest infected host at the time of
infection.

In Figure 3, we plot the Cumulative Distribution Function
(CDF) of the IP distance for healthy and infected hosts.
Note that in our infrastructure we use two large blocks of
IP addresses, which explains the sharp increase we see for IP
distance values above 2,600. We observe that infected hosts
are consistently in very close proximity with other infected
hosts. 80% of these hosts have at least one other infected
host in an IP distance which is less than 200, meaning that
they are likely located in the same subnet. The corresponding
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Fig. 3: Infections spatial correlation

percentage for healthy hosts considering the same IP distance
is significantly lower, equal to 15%. The presence of strong
spatial correlations indicates that certain subnets within a
network are “weak links”. For this reason, hosts close to
existing infections are much more likely to become infected
in the future. Observing clusters of infections should guide
administrators to review and revise the deployed baseline
defenses and security policies.

Correlations Across Time: The distribution of the time
when infections outbreak exhibits a diurnal pattern as illus-
trated in Figure 4a, where we see that most infections occur
during working hours. This is due to the fact that the activity of
client nodes, where most infections outbreak, exhibits strong
diurnal patterns.

Another interesting aspect of the extracted infection time
series is their burstiness across different time scales. To
quantify burstiness, we compute the Allan deviation [18] of the
infection time series at different scales. The Allan deviation is
given by the following equation:

σ2
x(τ) =

1

2
〈(∆x)

2〉 (2)

The time series is discretized into time intervals of length τ
and each interval yields a sample xi of the number of
infections that occurred within it. The equation measures the
difference between successive samples xi for different interval
lengths τ .

In Figure 4b, the bold line in the bottom shows the min-
imum possible deviation which occurs when all infections
have independent time arrivals. Intuitively, the Allan devia-
tion should diverge from this reference significantly in time
scales where the signal exhibits high burstiness. Figure 4b
shows that server infections in short time-scales are almost
independent, however, this changes if we look at time scales
above one hour. This non-burstiness of server infections in
short time scales suggests that measuring the infections over
hourly intervals can provide a useful long-term average of the
expected infections. This observation can be used to build a
predictor of near-future infection incidents using simple linear
time series models that capture short-range dependences, like
ARIMA. On the other hand, we find that client infections
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Fig. 4: Infections temporal correlations

are consistently more bursty and this is more evident for
time-scales above two minutes.

C. Differences Among Malware Families

Alert Severity: We next investigate the severity of the alerts
produced by different malware families using the classification
of Snort into high, medium, and low priority alerts. In Figure 5
we illustrate the daily average number of bundled alerts for
different severity levels and malware families. In addition, we
mark the percentage of the total alerts of a family to which
each bar corresponds. Backdoors exhibit, on the one hand, the
highest percentage of high severity alerts and, on the other
hand, the lowest absolute volume of alerts among all malware
families. The network footprint of backdoor infections is
dominated by communication attempts to their C&C, which
are not frequent, but are of high severity. In the case of
trojans we observe the highest total of high and medium
severity alerts. This is due to their rich behavioral profile
and their persistence in attempting to perform the respective
cycle of malicious actions within short time intervals. Spyware
generate a very large number of low severity alerts, mostly due
to redirections to malicious domains and phishing attempts.
Worms on the other hand exhibit an IDS footprint that is
dominated by medium severity alerts that mostly correspond
to scanning.

Impact of Infection on Outbound Alerts: We further
analyze the impact of infections on the malicious behavior
exhibited by internal hosts. Figure 6 highlights the increase
in generated alerts in the post infection phase for different
malware families. The amount of alerts in the pre-infection
phase is relatively low for all families, with a median ranging
between 0.7 and 2 alerts in an hourly basis. This means
that compromised hosts exhibit very low outbound malicious
activity before they become compromised.
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Fig. 5: Daily volume of alerts for different severity levels and
malware families

In the case of backdoors, for the bulk of the distribution we
see only a marginal increase in the outbound malicious activity
observed after an infection. Specifically, in the median case the
average number of recorded alerts per hour increases from 0.7
to 1.5. In the tail of the distribution we see a much sharper
increase. 5% of the infected machines appear to be generating
1 to 10 thousand outbound alerts per hour. These are machines
that at some point of their lifetime have been actively used to
initiate DoS attacks or to send massive amounts of spam. On
the other hand, the vast majority of backdoor infections
remain dormant and only rarely communicate with their
C&C to receive instructions and binary updates.
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Fig. 6: Infection impact on the number of outbound alerts for
different malware families

Trojans exhibit a more prominent increase of malicious be-
havior after the infection point. In the median case we observe
an increase by a factor of 4 in the average number of outbound
alerts. We consider that this is due to the fact that trojans
frequently attempt to install additional malicious binaries from
remote domains. This is consistent with recent studies, e.g.,
[19], that highlight the commodization of malware distribution
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and the predominance of pay-per-install services.
In the case of spyware we see that the infection has only

marginal impact on the number of outbound alerts. Note,
however, that these nodes exhibit the highest number of
outbound alerts in the pre-infection phase. We speculate that
this is because users who install spyware are prone to visiting
low reputation or malicious domains.

Worms exhibit the most evident increase in the outbound
activity after an infection. Specifically, we see that 90% of the
infected machines generate on average at least 80 severe alerts
per hour throughout their lifetime. This is due to the extensive
reconnaissance and scanning activity that is used to build a list
of targets for propagation and to perform exploitation attempts.
This process is automated and is not based on an external
stimulus, thus it often generates a vast number of alerts.

Malware Aliveness: We next analyze the extent to which
the malware in our study are alive, meaning that they exhibit
a visible malicious activity, or whether they are more stealthy,
undergoing dormant periods where no detectable network
footprint is generated. We define the aliveness of an infection
as the ratio of the number of days where we detect the malware
as active divided by the total number of days the infected
host is active. We tag an infection as alive during a specific
day if it has triggered at least one outbound alert of type
Attack or Compromised. On the other hand, an infected host
is considered alive during a given day if it has generated
any type of alert, including Policy related alerts. In Figure 7a
we illustrate the CDF of the aliveness of different malware
families.
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Fig. 7: Malware Aliveness and Fanout

We see that trojans are the most alive malware family: 6%
of the trojan infections have an aliveness value above 0.9; in
the median case the aliveness value is 0.63, suggesting that

trojans do not go stealthy by suspending their activity. We
speculate that this is because trojans autonomously initiate
different actions during their lifetime. They typically attempt
to update their binary, contact a remote controller to report,
and download additional malicious eggs to install on the
compromised hosts. Whenever the infected host is active it is
very likely that it will initiate at least one of these activities.

Spyware infections appear to be slightly less alive than
trojans. We consider that this is because spyware are dependent
to user activity and typically hook to a specific application,
such as a browser, a VoIP or FTP client, and, therefore, are
triggered when the user utilizes the application. However,
when this happens we observe a large number of alerts within
a short time window of few minutes.

Backdoors are significantly more stealthy exhibiting alive-
ness values below 0.5 in the median case. This can be
attributed to the fact that these infections will typically undergo
two stages, namely the communication with the controller to
update their instruction set and the manifestation of the mali-
cious activity, e.g., being a DoS attack or a spam campaign.
The former activity has a period in the order of days for most
of the backdoors we observed, whereas the latter activity is
only seldom observed in our trace.

Worms appear to be the least alive threat in our trace. In
the median case worm infected systems exhibit an aliveness
value of 0.4. The most predominant worm in our trace, Palevo,
spreads through instant messaging applications, therefore it
requires the user to use social networking chats or a typical
instant messaging client in order to propagate. This user
triggered behavior might not be observed for several days of
activity.

Malware Fanout: Furthermore, we count the number of
distinct remote IP addresses to which malware communicate.
In Figure 7b we illustrate the number of remote hosts contacted
by internal compromised systems during the entire lifetime of
their infection. We consider that we have a communication
attempt when we record an outbound alert of type Attack or
Compromised originating from an infected system.

Backdoor infected hosts initiate this communication to
contact their C&C. The most prominent backdoors in our trace,
i.e., Avzhan, Parabola and Zeus, use a predefined set of rendez-
vous points to contact their controller and do not use any type
of bullet proof hosting. In the median case we see that the
infected machines contact at least 300 external domains during
their entire lifetime, mostly to receive instructions. In the tail
of the distribution we see that 5% of backdoor infections
contact at least 1,000 remote hosts and this number reaches
a maximum of 3,146 contacts. These are mostly SpyEye
infections which use fast-flux to generate the C&C addresses
to communicate, resulting in a high number of total contacts.

Trojans have significantly more contacts than bots. Specifi-
cally we see that in the median case trojans communicate with
455 external hosts. The vast majority of these domains host
malicious content, and the purpose of this communication is to
download additional badware. 10% of the most active trojans
appear to initiate at least 1,450 communications during their
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lifetime. Most of these connections can be attributed to Torpig-
related infections that use domain-flux in order to generate the
domains used to send their harvested user data.

Spyware exhibit similar behavior to trojans. However, the
type of activity triggering this behavior is totally different.
The vast majority of the observed communication attempts
are redirections to third-party web-sites. The most prominent
activity of this type is manifested by the HotBar spyware,
which is a browser add-on, that will track down user’s activity
to produce personalized advertisements and will use pop-ups
and custom buttons on the browser to force the user to visit
relevant sites.

As expected worms communicate with the highest number
of remote hosts, generating alerts almost entirely of the class
Attacks and very few of the type Compromised. These are
reconnaissance attempts in the form of active scanning. In the
median case we see that worm infected machines communicate
with at least 620 external hosts whereas a small set of very
aggressive worms, accounting for 5% of the total infections,
contact at least 2,650 external hosts with a maximum of
10,625. Note that the same malware qualitative patterns also
hold at finer time scales.

VI. RELATED WORK

A number of previous studies have focused on IDS alert
correlation and aggregation, e.g., [20], [21], [22], [3]. These
studies evaluate proposed solutions on a small number of
testbed-based benchmarks, like the DARPA dataset [23], and
are tailored for general-purpose alert analysis rather than
for extrusion detection. In our work, we focus on extrusion
detection in an operational network and build an IDS alert
correlator to detect infected hosts from alerts produced by
Snort in a large site with more than 40 thousand unique
hosts. A significant part of our validation relies on non-trivial
manual investigation. In [13], we evaluate the complementary
utility of different forensics evidence we used in the manual
investigation process for different types of malware. Further-
more, in [14] to accelerate the diagnosis of security incidents,
we use the C4.5 classification algorithm to capture how to
combine low-level evidence from IDSs, reconnaissance and
vulnerability reports, blacklists, and a search engine.

Another group of studies, e.g., [24], [25], [26], [27], have
focused on novel schemes for detecting botnet-type infections
using passive monitoring methods, by comparing observed
flow-level features with botnet communication patterns. The
assumption made in this line of work is that an infected system
will initiate a distinct sequence of connection attempts in order
to receive instructions, update its binary, and report back to
its controller. This concept is similar to EDGe, which exploits
signs of recurring malicious activity to detect multistage
malware behavior. However, in our work we leverage IDS data
to track host behavior and use entropy-based criteria to identify
prominent malicious patterns.

Large traces of intrusion data have also been analyzed
in previous studies. In particular, in 2003 Yegneswaran et
al. [28] characterized the distribution, types, and prevalence

of intrusions using anonymized IDS alerts and firewall logs
collected by DShield [29]. Besides, in 2005 Kati et al. [30]
used a large trace of IDS alerts (from DShield and other
sources) to characterize correlated attacks and collaborative
intrusion detection schemes. Finally, Chen et al. [31] in 2011
replayed packet traces to multiple IPSs and used a voting
scheme to identify malicious traffic sessions. In contrast, in our
work we use a large collection of raw IDS alerts collected in
2011 to characterize a specific type of intrusion, i.e., infected
hosts within a monitored site.

Finally, another group of studies analyzed security incidents
in the wild using alternative data sources. Most related to our
work Sharma et al. [32] analyzed 150 security incidents that
occurred in a supercomputing center over five years using data
from five security sensors. Maier et al. [33] tailored custom
heuristics to detect scanners, spammers and bot-infected hosts
in packet traces from a large number of residential DSL
customers. Gu et al. [34] performed an extensive passive and
active measurement analysis of three predominant botnets and
made a number of observations regarding the similarities and
differences exhibited in the infection methods. Ho et al. [35]
analyzed packet traces responsible for the alerts triggered
by an IDS in a campus site, identified common sources of
FPs/FNs, and tailored a mechanism to improve the detection
accuracy.

VII. DISCUSSION

False Negatives: We opt to design EDGe to produce a small
number of false positives. This is one of our main goals as
the excessive amount of false positives is an important limiting
factor for IDSs. Therefore, in the trade-off between false pos-
itives and negatives we prefer to incur more false negatives in
order to reduce the amount of false positives. Quantifying the
false negative rate in a production environment is not possible.
However, towards this end one can use synthetic or testbed-
based evaluation traces, as discussed in Section VI, where
security incidents are known and controlled. Our work is
complementary to such approaches and establishes techniques
to find and validate security incidents in traces from production
environments.

Academic Infrastructure: Our characterization results in
Section V are based on data from an academic infrastructure
and should only be carefully generalized, when possible, to
other types of networks. For example, we expect that similar
qualitative findings about the impact of infections and the
presence of heavy hitters hold in networks of different type.
In contrast, we expect that the volume of infections will be
lower in more tightly managed environments. Moreover, our
approach assumes static IP addresses, which in the studied
network account for 44% of the IP addresses. However, it can
be extended to dynamic IP addresses if DHCP lease records
are available.

Signature-based IDS: In this work we rely on a signature-
based IDS to identify active infections in the monitored
infrastructure. A fundamental limitation of an IDS is that
it can only detect known attacks with existing signatures.
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Besides, it cannot inherently identify social engineering or
browser attacks, such as drive-by-downloads and cross-site
scripting. To address these issues, security architectures should
always consist of multiple layers of defensive mechanisms
that complement each other. For example, anomaly detection
schemes (for a survey refer to [36]) can be employed to
identify patterns corresponding to unknown attacks, whereas
host-based AVs can be used to detect attacks targeting the
end-user.

VIII. CONCLUSIONS

Although network intrusion detection systems (IDSs) have
been studied for several years, the security focus has been
to detect illicit intrusions on the monitored infrastructure.
Traditionally, IDSs inspect inbound traffic for attacks against
Internet-exposed systems. However, preventing internal system
compromises has proven to be a futile task and the existence
of internal infections should be considered a certainty. In this
work we focus on the following problem: from a deployment
of the popular Snort IDS in an operational network that
produces 3 million alerts per day, we want to detect infected
hosts within the monitored network with a small number of
false positives. To address this problem, we first build a novel
IDS alert correlator for Snort, which we call EDGe. EDGe
uses a statistical measure to find hosts that exhibit a repeated
multi-stage malicious footprint involving specific classes of
alerts. In addition, it can identify the malware family and
variant of detected infections. A significant part of our work
is devoted to the validation of our heuristic. We conduct
a complex experiment to assess the security of suspected
infected systems in a production environment using data from
several independent sources. We find that EDGe produces only
15% false positives. Having validated our heuristic, we apply it
to a 9-month long trace of IDS alerts and characterize various
important properties of more than 4 thousand infected hosts
in total. For example, we find that among the infected hosts, a
small number of heavy hitters originate most outbound attacks
and that future infections are more likely to occur close to
already infected hosts.

IX. ACKNOWLEDGEMENTS

The authors wish to thank Prof. Bernhard Plattner and
Dr. Vincent Lenders for their invaluable help and fruitful
discussions. We would also like to thank Stephan Sheridan
and Christian Hallqvist at ETH for their help in the collection
and archiving of the data used in this paper.

REFERENCES

[1] “Network intrusion detection system for UNIX and Windows,” http:
//www.snort.org, 1998.

[2] “Emerging Threats Rules,” http://www.emergingthreats.net, 2003.
[3] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Proceed-

ings of the 4th International RAID Symposium, 2001, pp. 54–68.
[4] L. Etienne and J.-Y. Le Boudec, “Malicious traffic detection in local

networks with snort,” EPFL, Tech. Rep., 2009.
[5] “Network Security Archive,” http://www.networksecurityarchive.org,

2006.

[6] P. Smyth and R. M. Goodman, “An information theoretic approach to
rule induction from databases,” IEEE Trans. on Knowl. and Data Eng.,
vol. 4, pp. 301–316, August 1992.

[7] G. Piatetsky-Shapiro, “Discovery, analysis and presentation of strong
rules,” in Knowledge Discovery in Databases, G. Piatetsky-Shapiro and
W. J. Frawley, Eds. AAAI Press, 1991, pp. 229–248.

[8] E. Raftopoulos and X. Dimitropoulos, “Detecting, validating and char-
acterizing computer infections in the wild,” in Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference.

[9] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,
“Automatically identifying trigger-based behavior in malware,” 2008.

[10] V. Sekar, Y. Xie, M. K. Reiter, and H. Zhang, “Is host-based anomaly
detection + temporal correlation = worm causality?”

[11] “Advanced automated threat analysis system,” www.threatexpert.com.
[12] “TrendMicro Threat Encyclopedia,” http://about-threats.trendmicro.com.
[13] E. Raftopoulos and X. Dimitropoulos, “Understanding network forensics

analysis in an operational environment,” in IEEE International Workshop
on Cyber Crime, San Francisco, CA, USA, May 2013.

[14] E. Raftopoulos, M. Egli, and X. Dimitropoulos, “Shedding light on log
correlation in network forensics analysis,” in Proceedings of the 9th
DIMVA Conference. Crete, Greece: Springer-Verlag, Jul 2012.

[15] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Bothunter:
Detecting malware infection through ids-driven dialog correlation.”

[16] “Malware Threat Center,” http://mtc.sri.com/, 2007.
[17] S. Staniford, V. Paxson, and N. Weaver, “How to own the internet in your

spare time,” in USENIX’02. Berkeley, CA, USA: USENIX Association,
2002, pp. 149–167.

[18] D. W. Allan, “Time and frequency (time domain) characterization,
estimation and prediction of precision clocks and oscillators,” IEEE
Trans. UFFC, vol. 34, November 1987.

[19] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring Pay-per-
Install: The Commoditization of Malware Distribution,” in USENIX’11,
San Francisco, CA, August 2011.

[20] X. Qin and W. Lee, “Statistical causality analysis of infosec alert data,”
in Proceedings of The 6th International RAID Symposium, 2003.

[21] H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts,” ser. RAID ’00.

[22] K. Julisch, “Clustering intrusion detection alarms to support root cause
analysis,” ACM TISSEC, vol. 6, 2003.

[23] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The
1999 darpa off-line intrusion detection evaluation,” Computer Networks,
vol. 34, October 2000.

[24] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scale botnet detection
and characterization,” in Proceedings of HotBots’07. Berkeley, CA,
USA: USENIX Association, 2007, pp. 7–7.

[25] J. Goebel and T. Holz, “Rishi: identify bot contaminated hosts by irc
nickname evaluation,” in Proceedings of HotBots’07. Berkeley, CA,
USA: USENIX Association, 2007, pp. 8–8.

[26] J. R. Binkley and S. Singh, “An algorithm for anomaly-based botnet
detection,” in Proceedings of SRUTI’06. Berkeley, CA, USA: USENIX
Association, 2006, pp. 7–7.

[27] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
analysis of network traffic for protocol- and structure-independent botnet
detection,” 2008.

[28] V. Yegneswaran, P. Barford, and J. Ullrich, “Internet intrusions: global
characteristics and prevalence,” in SIGMETRICS ’03.

[29] “Cooperative Network Security Community,” www.dshield.org, 2000.
[30] S. Katti, B. Krishnamurthy, and D. Katabi, “Collaborating against

common enemies,” in IMC ’05, Berkeley, CA, USA, 2005, pp. 34–34.
[31] I.-W. Chen, P.-C. Lin, T.-H. Cheng, C.-C. Luo, Y.-D. Lin, Y.-C. Lai,

and F. C. Lin, “Extracting ambiguous sessions from real traffic with
intrusion prevention systems,” I. J. Network Security, 2012.

[32] A. Sharma, Z. Kalbarczyk, J. Barlow, and R. K. Iyer, “Analysis of
security data from a large computing organization,” in DSN, 2011.

[33] G. Maier, A. Feldmann, V. Paxson, R. Sommer, and M. Vallentin, “An
assessment of overt malicious activity manifest in residential networks,”
in DIMVA’11, Berlin, Heidelberg, 2011, pp. 144–163.

[34] S. Shin, R. Lin, and G. Gu, “Cross-analysis of botnet victims: New
insights and implications,” in RAID, 2011.

[35] C. yuan Ho, Y. dar Lin, Y. cheng Lai, I. wei Chen, F. yu Wang,
and W. hsuan Tai, “False positives and negatives from real traffic with
intrusion detection/prevention systems.”

[36] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.


