
Enabling Ultra-Low Delay Teleorchestras using So�ware
Defined Networking∗

Extended Abstract†

Emmanouil Lakiotakis
FORTH-ICS

University of Crete
Greece

manoslak@ics.forth.gr

Christos Liaskos
FORTH-ICS

Greece
cliaskos@ics.forth.gr

Xenofontas Dimitropoulos
FORTH-ICS

University of Crete
Greece

fontas@ics.forth.gr

ABSTRACT

Ultra-low delay sensitive applications can a�ord delay only at the

level of msec. An example of this application class are the Net-

worked Music Performance (NMP) systems that describe a live mu-

sic performance by geographically separate musicians over the In-

ternet. �e present work proposes a novel architecture for NMP

systems, where the key-innovation is the close collaboration be-

tween the network and the application. Using SDN principles, the

applications are enabled to adapt their internal audio signal pro-

cessing, in order to cope with network delay increase. �us, af-

fordable end-to-end delay is provided to NMP users, even under

considerable network congestion.
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1 INTRODUCTION

Networked Music Performance (NMP) systems, describe the pro-

cess where musicians located in di�erent places perform synchro-

nized via the Internet [18]. NMPs belong to ultra-low delay sen-

sitive applications due to the latency requirements they have. In

NMP services the maximum a�ordable delay between the trans-

mi�ed and the �nally reproduced signal should be up to 25 ms.
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�is constraint is denoted as the Ensemble Performance �resh-

old (EPT) [22].

�ere are many factors that a�ect end-to-end delay in NMP sys-

tems, which are grouped in two categories: network delay and au-

dio processing delay. Network delay expresses the delay due to

data transmission via the network, a�ributed to physical propa-

gation and the network operating state. On the other hand, the

audio processing delay is introduced by the audio capturing, pro-

cessing and encoding methods, for each transmi�er/receiver pair.

Due to the delay that audio encoders yield (about 100 ms), they are

avoided in NMP services; instead, raw audio is preferred [2].

In this work, our goal is to endow NMP systems with resistance

against tra�c congestion and link failure cases. To make this fea-

sible, our system introduces collaboration between the NMP appli-

cation and the network. In more detail, the proposed architecture

exploits the �exibility for dynamic network recon�guration and

global view of the network condition that So�ware De�ned Net-

working (SDN) o�ers in order to achieve the acceptable latency

for NMP [8, 11]. �e SDN controller, that orchestrates the net-

work, is responsible for the data path setup that will carry the au-

dio between each transmi�er/receiver pair. Additionally, the con-

troller instructs audio �ows rerouting in case of congested paths.

When the whole network is congested, o�ering no feasible paths

for NMP, the SDN controller communicates with the NMP applica-

tion, at both the transmi�er and receiver sides, in order to switch

to another audio con�guration set, thus decreasing the audio pro-

cessing delay and compensating the increased network latency.

�e proposed architecture, avoids network bandwidth waste, since

each node receives a single version of the initial signal, instead of

di�erent encoded versions of the same signal [4, 6, 7]. �e major

di�erence from similar approaches is that we apply ’smart’ routing

based on active measurements in the network instead of applying

certain policies on the tra�c queues of the switches/routers [9, 16,

23, 25], tra�c manipulation via TOSmatching [1, 24] or using Di�-

Serv approach that is not scalable [27]. We exclusively use end-to-

end delay as a rerouting criterion instead of incorporating metrics

that re�ect the di�erence between the transmi�ed and the required

by the user audio quality [15, 19].

�e main objective of our system is to absorb network delay in-

crease that congestion causes via the blocking delay decrease. �e

methodology relies on proceeding to low bit-rate transmission and

possibly audio quality, while keeping the end-to-end delay under

the EPT. When the network recovers from congestion, the NMP

application returns to high bit-rate transmission automatically and



CoNEXT’17, December 2017, Seoul/Incheon, South Korea Emmanouil Lakiotakis, Christos Liaskos, and Xenofontas Dimitropoulos

transparently to NMP users. We evaluated our system in an emula-

tion environment, demonstrating the advantages of the proposed

architecture.

2 THE SDN TELEORCHESTRA SYSTEM

As described in Section 1, end to end delay in NMPs is the summary

of network and audio processing delay. In mathematical form, end

to end delay in NMPs for similar user audio equipment can bemod-

eled as:

dend−to−end = 2 × dsound−card + dn (1)

wheredend−to−end represents end-to-end delay,dsound−card shows

the delay due to sound-card in transmi�er and receiver and dn ex-

presses the network delay. Delay due to audio processing is alter-

natively called as blocking delay [6]. Equation (2) describes the

blocking delay evaluation:

dblockinд−delay =
f rame size

samplinд rate
+ d0 (2)

In equation (2), frame size denotes the size of audio packets that

a user sound-card can process per hardware clock tick, and the

sampling rate represents the number of samples the sound-card

acquires per second. Finally, d0 is a constant delay that is due to

the sound-card’s hardware quality. For blocking delay decrease,

the fraction between frame size and sampling rate should be also

decreased.

�e proposed architecture consists of three components: a SIP,

an SDN and a Network Monitoring service as shown in Fig. 1. �e

SIP service initially measures the audio performance of each user

for di�erent audio se�ings and stores this information. Addition-

ally, it classi�es each user as premium or regular based on the priv-

ileges that he has. Premium users do not accept low quality trans-

missions compared with regular users. �is category contains mu-

sicians that require high quality audio or users (audience) that may

have paid for low latency according to SLAs. SIP triggers the ap-

plication when audio modi�cation is required [5, 20, 26].

�e SDN service describes the controller functionality that in-

stalls paths for audio transmission. �e number of paths towards

each user and the path characteristics are de�ned by the user classi-

�cation. Each path consists of OVS switches that are instructed by

SDN service via the OpenFlow protocol [3]. Also, the SDN service

reroutes audio �ows when a be�er path is available. Finally, the

Network Monitoring service measures network delay for all paths

between users by periodic UDP packet transmission between them.

When a new user participates in our system, the SIP service creates

an audio pro�le of the user for various audio parameter combina-

tions. Moreover, it classi�es the user as either premium or regular

as discussed. Based on the classi�cation results, the SDN service

assigns a single path from the audio source to the user and audio

transmission starts, and keeps a tunable number of backup paths at

the ready. �e NetworkMonitoring service continuouslymonitors

all paths and the SDN service reroutes audio �ows to a path that

surpasses the active one in performance. If all paths are congested

resulting in over-EPT end to end delay, the SIP service contacts the

application side in order to switch to an audio mode that has less

blocking delay. When the network recovers from congestion, the

NMP returns to the previous audio con�guration.
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Figure 1: �e proposed system architecture.
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Figure 2: End-to-end delay evaluation.

3 SYSTEM EVALUATION

To evaluate our system, we used real live audio, and Mininet [17]

to emulate a realistic network setup. �e topology is shown in

Fig. 1. POX [12, 21] is selected as the SDN controller. We used

Netem tra�c control tool in order to increase delay in each path.

To avoid redundant reroutes, we used a threshold of at least 2 ms

lower latency as the criterion for taking rerouting decisions among

available paths. �e results of our experimental evaluation are de-

picted in Fig. 2. Fs denotes sampling rate and Fr the frame size. �e

proposed So�ware-De�ned NMP solution can be also applied in

the real Internet, considering the domains (Autonomous Systems)

as “big switches” connected with physical links or classic overlay

tunneling mechanisms [10, 13, 14].

Assume User B declares interest for receiving audio from User

A. �ere are three paths between User A and User B in the test

topology. At the beginning, the SDN service assigns path P1 for

audio transmission with Fs equal to 44.1 kHz and Fr set to 512

samples. As we increase the network delay in the path, the SDN

service reroutes audio �ows to paths P2 (at t = 65 s) and P3 (at

t = 118 s). At t = 189 s, the SIP service informs the NMP to switch

to an audio mode with lower blocking delay (Fs equal to 48 KHz

and unaltered Fr ). Assuming that the network delay increases fur-

ther, and in order to keep end-to-end delay below EPT, at t = 194

s, the application modi�es Fr to 256 samples via interaction with

the SIP service. �is process takes place during the experimental

setup for various audio modes. When the network delay is very

high, our system results in best e�ort delay (a�er t = 241 s), given

the available audio modes and network condition. Comparing our

method with the case that application and network could not inter-

act, we achieve delay improvement by 29.6% in end-to-end delay.
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