ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking

Gavril Chaviaras1,2, Petros Gigi1,2, Pavlos Sermpezis1, and Xenofontas Dimitropoulos1,2
(gchaviaras, gkgikis, sermpezis, fontas)@ics.forth.gr

1 FORTH, Greece
2 University of Crete, Greece

1. Background and Motivation

- The Border Gateway Protocol (BGP) is a distributed protocol without globally deployed authorization mechanisms.
- An Autonomous System (AS) can announce illegitimate BGP paths, hijacking thus IP prefixes of other ASes.
- BGP Prefix Hijacking is a common phenomenon in the Internet that can cause serious routing problems and economic losses.

Examples of public/notorious BGP hijacking cases:
- Hackers performed several short hijacks, through a Canadian ISP, and stole ~$100k bitcoins in 2014.
- A Chinese ISP mistakenly announced 15% of the entire BGP table in 2010.
- An ISP in Pakistan, due to a misconfiguration, hijacked YouTube’s prefixes and disrupted its services for 2 hours in 2008.

State-of-the-art detection & mitigation mechanisms:
Most existing solutions are "third-party" alert systems that introduce significant delay until the mitigation of a prefix hijacking.
- Third-party detection services watch the entire BGP table.
- Network administrators need to manually verify a hijack alert.
- Manual reconfiguration of routers are needed to mitigate the hijack.
- The total time needed is several minutes to a few hours.
- This is too slow; especially since more than 20% of hijacks last <10min.

2. Our solution: ARTEMIS
(Automatic and Real Time De)tection and Mitigation System)

Key Features
- Monitoring: many vantage points & light-weight.
- Detection: real-time & no false positives.
- Mitigation: automatic (e.g., over SDN controller) & fast.

ARTEMIS Overview
- A system that is used by an AS to detect & mitigate hijacks against its own prefixes. (not a third-party service; no false positives)
- Detection is based on BGP data from public control-plane sources:
 - Route collectors (BGPmon & RIPE RIS streaming interfaces)
 - Looking Glass servers (through the Periscope tool)
- Mitigation uses prefix de-aggregation: the affected AS immediately announces sub-prefixes of the hijacked prefix.

3. Experiments with a real AS

The PEERING testbed (https://peering.usc.edu/)
- Owns real ASNs and IP prefixes.
- Has servers at different sites around the world (IXPs, universities, etc.).
- Peers with real networks.
- Users can announce IP prefixes, through BGP, to the real Internet.

Experiments Setup
- Phase 1 (Legitimate announcement): Announcement of an IP prefix, e.g., 10.0.0.0/23, from a PEERING site S1, with ASN-1 as the origin-AS.
- Phase 2 (Hijacking & Detection):
 (a) From a different PEERING site S2, announcement of the same prefix 10.0.0.0/23 with ASN-2 as the origin-AS (i.e., BGP hijacking).
 (b) ARTEMIS detects the hijacking, the first time it receives data from a control-plane source, for the prefix 10.0.0.0/23 with ASN-2.
- Phase 3 (Mitigation): Immediately after the detection, ARTEMIS triggers the announcement of the (de-aggregated) sub-prefixes 10.0.0.0/24 and 10.0.1.0/24 from S1 with ASN-1 as the origin-AS.

Measurements and Results
- Detection delay < 1min !
- From detection to mitigation (de-aggregation) 1-15sec !
- Mitigation completed (as seen from vantage points) ~5min !

Control-plane sources / tools
- Periscope (http://www.caida.org/tools/utilities/looking-glass-api/)
- BGPmon (http://www.bgpmon.io/)
- RIPE RIS (http://www.ris.ripe.net/)

Acknowledgements
This work has been funded by the European Research Council Grant Agreement no. 338402.

Contact Info
- We are the INSPIRE Group, and you can find us at:
 http://www.inspire.edu.gr/